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torsion-angle space using the multivariate 
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We describe a multivariate wrapped-Gaussian distribution that can be used to model statistical distributions 
expressed in periodic angular variables even in the presence of significant angle angle correlations. Using 
amino acid and peptide examples, we show how this distribution can be used to characterize accurately 
conformational fluctuations in torsion-angle space. The method permits more accurate characterization of 
large-scale peptide and polymer fluctuations than the standard harmonic or quasiharmonic method. This 
can be used to increase the efficiency of Monte Carlo sampling and simulated annealing in torsion-angle 
space. Copyright © 1996 Elsevier Science Ltd. 

(Keywords: macromolecular conformations; correlated fluctuations; wrapped-Gaussian distribution) 

I N T R O D U C T I O N  

The motions of  large polymers, proteins and other 
complex macromolecules are primarily stochastic and 
can be characterized by a fluctuation tensor whose 
eigenvectors and eigenvalues determine the principal 
axes and moments  of  fluctuation, respectively. For  the 
small motions that occur at low temperatures,  this tensor 
can be calculated using harmonic or quasiharmonic 
methods. These model the conformational  probabili ty 
distribution p(R) as a multi-dimensional Gaussian: 

PG (R) = det-1 ( x / ~ A )  exp [ -  (R - R °) (2A 2) I(R - R°)] 

(1) 
Here vector R = {ri} specifies the positions r i of  all the 
atoms in a particular conformation,  R ° specifies the 
mean conformation of the macromolecule and A 2 is 
the symmetric matrix specifying the components  of  the 
mean-square fluctuation. For  the very small fluctuations 
that occur at low temperature T, R ° and A can be 
estimated from the first- and second-order derivatives of  
the Gibbs/Boltzmann distribution e =~v corresponding to 
the molecular potential V(R). This gives the harmonic 
approximation: 

O V ( R )  R : R  ° OR = 0 (2) 

0 2 V ( R )  I = A_ 2 
/ 3 ~  R=R ° (3) 

w h e r e / 3 -  (kBT) - l .  This approximat ion has been used 

* To w h o m  cor respondence  should  be addressed  

to characterize small-amplitude protein motions in terms 
of their eigenmodes. For  example, Brooks and Karplus 
used it to show that the fluctuations of  bovine pancreatic 
trypsin inhibitor are dominanted by low-frequency 
modes I . 

Equations (2) and (3) are accurate only when T is so 
low that V is approximately quadratic in the thermally 
sampled region. At higher temperatures, where the 
potential in the sampled region is anharmonic,  the 
quadiharmonic approximation can be employed. It is 
most  often used to model data sets {R~ : a = 1 , . . . ,  N d} 
of N d conformations R~ obtained by molecular dyn- 
amics or Monte  Carlo computat ional  sampling. As in 
conventional statistics, we estimate R ° and A by requir- 
ing that the first and second integral moments  of  the data 
set equal the corresponding moments  of  the Gaussian 
distribution: 

(R) = l Rp(R) dr = Ro (4) 

<(R- <R) ) (R-  <R> )) -- J (R-  R°)(R - R° )p (R)dr  = A 2 

(5) 

where angle brackets here and throughout  the paper  
denote averages over the data set: 

1 Nd 

( f )  = ~-j  ~ f ~  (6) 
a = l  

(As in statistics, for best estimation of the sample 
variance, the left-hand side of  equation (5) should be 
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multiplied by the factor NJ/(N ~t- 1). However, since 
N a >> 1 in our application, this factor can be ignored.) 

The quasiharmonic approximation in Cartesian coor- 
dinates has been widely used for polymer studies. For 
expample, Karplus and Kushick 2 used it to calculate the 
conformational entropies of polymers. Berendsen and 
colleagues 3 used the method to analyse the fluctuations 
of proteins at 300 K and to show that most (~90%) of 
the fluctuation at this temperature is expressed by a small 
subset (~ 5%) of the fluctuation modes. 

However, these Cartesian coordinate methods are 
only applicable to proteins when the eigenvectors of A 2 
are tangent to the manifold of fixed bond lengths and 
bond angles. This will be the case for small fluctuations. 
However, for sufficiently large fluctuations, the motions 
along these eigenvectors can significantly violate bond 
angle and bond length constraints and do not represent 
physical motions. Although it is possible to project these 
Cartesian modes onto the manifold of physically allowed 
motion in the small-angle limit 4, such projections neces- 
sarily involve errors for large-angle fluctuations. 

Large motions can be more compactly and accurately 
represented in torsion-angle space. In this case, equation 
(1) is replaced by: 

p/(O) = de t  1 ( ~ _ _ ~ ) e x p [ - ( 0 -  O°)(2E 2) I ( 0 -  0°)] 

(7) 

where 0 -  {Oi : j  = 1 , . . . , N }  is an angular conforma- 
tion vector and Z2 is a symmetric tensor in the N- 
dimensional torsion-angle space. 0 ° and E 2 can be 
approximated using either equation (3) or equation (5) 
with the replacements: 

R 0 (s) 

A --+ E (9) 

Although equation (7) does not respect the periodicity of 
the angular variables, it can be used as long as the 
angular fluctuations are << 7r. For example, G6 et al. s 
used the harmonic approximation in torsion-angle space 
to identify the low-temperature normal modes of bovine 
pancreatic trypsin inhibitor, and thereby to calculate its 
entropy and free energy. 

An important application of these methods is Monte 
Carlo sampling in torsion-angle variables for computing 
thermodynamic properties. Efficient sampling can only 
be achieved if the transition function, which specifies the 
size scale of the random jumps, is roughly matched to 
the anisotropic curvature of the energy function in the 
sampling region. However, Monte Carlo sampling is 
most commonly applied using an isotropic transition 
function with a single size scale determined by a 
simple fractional move acceptance rate criterion 6. This 
approach is inefficient in large-dimension polymer 
probably accounts for the relative unpopularity of this 
sampling method compared to its primary competitor, 

7 8 molecular dynamics . Noguti and G6 have analysed 
proteins by anisotropic Monte Carlo sampling using the 
harmonic approximation to determine the curvature. 
They showed that the use of an anisotropic transi- 
tion function can improve efficiency by 50- to 500-fold. 

9 Vanderbilt and Louie have described how the quasi- 
harmonic approximation can be used to approximate 
an anisotropic transition function for anharmonic 

potentials in Cartesian space. This method has been 
adapted to a torsion-angle description of proteins by 
Shin and Jhon I°'ll. 

Unfortunately, even the quasiharmonic approach is 
not accurate at high temperatures where fluctuations 
are very large. The problem is that the periodicity 
and non-linearity of the angle variables are not 
properly accounted for. The high-temperature domain 
is particularly important for computational studies of 
protein folding and protein folding pathways. For 
example, computational analysis of the pentapeptide 
Met-enkephalin has shown that important pathway 
choices may be made at temperatures as high as 15 kcal 
m o l l _  = 7500K 12. High-temperature simulations are 
also needed for computational refinement of macro- 
molecular X-ray crystallography data 13. Current algo- 
rithms for this purpose 14 typically use high-temperature 
molecular dynamics simulations to explore large regions 
of conformation space while searching for the best fit to 
the experimental data. Anisotropic Monte Carlo sam- 
pling in torsion-angle space might be more efficient but 
has not been applied because of the lack of appropriate 
methods for determining the angular transition function. 

Given the fundamental nature of the Gaussian model 
(1) in (Euclidean) multivariate statistics, it is surprising 
that no methods to address this problem in multi- 
dimensional angular space yet exist. A number of 
methods have been used to describe unimodal distribu- 
tions in one angular variable 15, but they do not directly 
generalize to the multivariate case. To address this need, 
we have developed a new method for calculating 
fluctuation tensors in torsion-angle space. Among other 
applications, this method can be used to characterize 
large high-temperature polymer and biopolymer fluctua- 
tions, for defining high-temperature 'effective' normal 
modes, and for calculating anisotropic Monte Carlo 
transition functions. 

MATHEMATICAL METHODS 

For illustration, we first consider a simple case: the 
thermal distribution of the dihedral 4, ~ angles of 
terminally blocked valine. Scatter plots obtained by 
Monte Carlo sampling at three temperatures are shown 
in Figure 1. (These data were generated using an 
adiabatic potential generated using the Moil force 
field 16. Valine was blocked at the amino and carboxyl 
ends with methyl groups.) The Gaussian approximations 
to these distributions determined by the angular quasi- 
harmonic approximation, equations (4) and (5) with 
(8) and (9), are represented in panels (a) (c) by the 
shaded regions bounded by the contours indicating 
where p.(O) = e - 2 .  We will call these 'e -2 regions'. (These 
regions would contain ~ 87% of the points generated 
by a perfectly modelled two-dimensional Gaussian 
distribution.) 

At low temperature (100K) the points are tightly 
clustered. The correspondence of the e -2 region with the 
distribution of points in Figure la indicates that, in this 
case, the angular quasiharmonic approximation accu- 
rately characterizes the distribution. However, this 
method fails at higher temperatures, as can be seen by 
comparing the scatter plot resulting from molecular 
dynamics simulation at 300K with the corresponding 
quasiharmonic e 2 region (Figure lb). The method fails 
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Figure 1 The 4~ ~ scatter plots for terminally blocked valine at 100K ((a) and (d)), 300K ((b) and (e)) and l l 0 0 K  ((c) and (f)) showing the 
corresponding descriptions produced by the angular quasiharmonic ((a) (c)) and multivariate wrapped-Gaussian ((d) (f)) models. The shaded regions 
are bounded by the contours where p ( ~ ,  ~ ) / p ( ~ O ,  ~0) = e-2 for p = pz ((a)-(c)) or p -Pwg ((d)-(f)). In contrast to the quasiharmonic method, the 
M W G  method, the M W G  method accurately models the data set even at high temperatures 

because it ignores the periodicity of  the ~ and ~ variables 
both in calculating the mean angular position and in 
calculating the fluctuation tensor. (In this simple case, 
inspection suggests that a better approximtion could be 
obtained if the coordinate system were shifted by 7r in 
both the ~ and ~ variables. However, in practical cases, 
such shifts must be determined algorithmically, not by 
visual inspection. The standard angular quasiharmonic 
method cannot do this. Furthermore,  even a shift of 
origin will not result in accurate estimation of  large 
angular fluctuations.) The failure is complete at 1100 K 
(Figure lc), where the quasiharmonic approximation yields 
a model Gaussian distribution that is rather uniform over 
most of the region, even though significant angular depen- 
dences are visually obvious. A better method is needed. 

Single-variable wrapped-Gaussian distribution 
The von Mises distribution, PvM (0; ~, 0 °) ~ exp[~ cos 

x (0 -- 0°)] is commonly used to describe angular statis- 
tics in a single variable 15. While it gives good results, we 
do not know how to generalize it to the multivariate case. 
Instead, we generalize the single-variable wrapped-Gaussian 
distribution 15. We begin by noting that the Gaussian 
distribution (1) is the solution of the diffusion equation in 
Cartesian coordinates with an anisotropic diffusion tensor. 
This motivates us to use the corresponding solution in 
periodic angular coordinates as a statistical model. Since 
the diffusion equation is linear, we can go from the solution 
on a line to the solution on a ring simply by 'wrapping' the 

probability in the region outside the interval -~v <_ 0 < 7r 
onto that interval. Figure 2 illustrates this for three one- 
dimensional cases: where ~ << 7r, ~ = x/2/2 and ~ > ~v. 
The one-dimensional wrapped-Gaussian distribution is: 

- v~2~m~=~_exp[-(O-O ° -  27rm)e/2~ e] (10) P w g ( O )  

It is proportional to the Jacobi 0 function, which plays a 
prominent role in many areas of mathematics. It can also 
be expressed as a Fourier series: 

1 v~ 
Pwg(O) = ~ k _ ~  exp(-~Zk2/2) expI-it~(0 - 0°)] (11) 

In the (low-temperature) limit where ~ << 7r (e.g. as in 
the left panel of Figure 2), all the terms in representation 
(10) with m ¢ 0 are negligible and Pwg approaches the 
standard Gaussian distribution: 

1 
p,,g(0) ~ ~ - ~ e x p [ - ( 0  - 0°)2/2~ 2] for ~ << 7r (12) 

In the (high-temperature) limit where ( > 7r, only the 
k = 0, +1 terms in representation (11) remain significant 
and: 

Pwg(O)~l[l+Zexp(-~2/Z)cos(O-O°)]  for ~ > 7r 

(13) 
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Figure 2 Three examples of one-dimensional wrapped-Gaussian distributions with (left to right) ~ << re, ~ = ,/2/2 and ~ > 7r 

Like standard Gaussian distribution, the wrapped- 
Gaussian distribution is governed by two parameters, 0 ° 
and ~, which describe its mean and fluctuation. However, 
unlike the scale-covariant Euclidean case (the scale 
covariance of  the Gaussian distribution in Euclidean 
space permits the familiar transformation to scale- 
invariant z variables, z = ( x -# ) / c~ ,  which greatly 
simplifies analysis), the non-Euclidean angular space 
has a unique scale, ~-, set by its periodicity. When { << 7r 
the curvature can be ignored and 0 ° and { can be well 
estimated using the quasiharmonic approximation (4) 
and (5), with appropriate substitutions. However, when 

~ ~ a more sophisticated approach must be used. We 
proceed by analogy to the quasiharmonic equations (4) 
and (5), which determine the Gaussian parameters, by 
matching the expectation values of the first and second 
spatial moments of the data set to those predicted by the 
distribution. To allow for the periodicity of the space, we 
consider the moments, not of  0, but of exp(i0~), 
c~ = 1 , . . . , N  a, where {0~,} is the data set of observed 
angles. We demand that: 

[~rTr ei°Pwg ( O ) dO (exp(i0j)) = = exp[-(~2/2 - i0°) ]  (14) 

This implies that: 

arg(e i°) = 0 ° (15) 

- 2 l o g  [(ei°)] = ~2 (16) 

The positivity of  the left-hand side of  (16) is guaranteed, 
as required for a normalizable distribution, by the 
triangle inequality. 

Equations (15) and (16) are similar to those used for deter- 
mining the parameters of  the von Mises distribution 15 
and give reasonable approximations to one-dimensional 
angular distributions. They could also be used to describe 
fluctuations in multiple angular variables if the fluctua- 
tions were uncorrelated. The difficulty lies in developing 
method that can accommodate angular corrections. 

Multivariate wrapped-Gaussian distribution 
We generalize equation (10) to define the multivariate 

wrapped-Gaussian ( M WG ) distribution: 

pwg(O) = d e t  ' ( x / ~ N )  ~ exp[-(O - 0 ° - 27cm) 
m E  x N 

× (2~,2) -] ( 0 -  0 ° - 27vm)] (17) 

I F dO = 1 (18) Pwg(0) 
i~v 

where 0_= {0/: J = 1 , . . . , N }  is a vector of angles in the 
N-dimensional angular space, 0 ° is the vector that 
specifies the centre of  the distribution, ~,2 is the fluc- 
tuation matrix, and m is a vector on the N-dimensional 
integer lattice, Z N. The sum is taken over the entire 
lattice. This is the solution for anisotropic diffusion on a 
multi-dimensional torus. It can also be expressed as a 
Fourier series: 

Pwg(0 ) = (270 N Z e x p [ - k .  (~2/2).  k] 
kcZ u 

× exp[ - ik .  (0 - 0°)] (19) 

As in the one-dimensional case, we might hope to 
determine the elements of  0 ° and .-.2 by matching the 
expectation values of exponential moments calculated 
from the data set to those predicted by the M W G  
distribution. Thus we generalize (14) to: 

(eir/• O) = [eir/• Opwg(O ) dO = exp [ -q .  (E2/2) • r/] 
l 

r /~  Z x (20) 

This yields relations that depend on 0°: 

arg(eir/• 0) = r/. 0 ° r / c  Z u (21) 

and on 02: 

- 2  log I(eirt. O) l -- ft. Z 2. rt r; c Z u (22) 

Equations (21) and (22) cannot be satisfied for all rt 
since we only have N + N ( N  + 1)/2 variable parameters. 
Following the one-dimensional procedure, it seems 
reasonable to fix the N elements of 0 ° by evaluating 
(21) for the first-order on-axis moments of the 0i: 

arg(exp(i0i) ) = 0 ° (23) 
, ,] 

In the same vein, we would like to fix the N diagonal 
elements of E 2 by evaluating (22) for the first-order on- 
axis moments: 

_2 log  ](exp(i6)) ] = ~JJ=2 [not used] (24) 

and to fix its N ( N -  1)/2 off-diagonal elements by 
using (22) with combinations of the lowest-order 
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off-axis moments (exp[i(0¢ 4- Ok)]): 

1, I(exp[i(0j - 0k)])l 
- - ~ , o g ~  ~ = EZk [not used] (25) 

However, (24) and (25) cannot be used to fix ~.2 because 
they do not guarantee that the calculated .~.2 will be 
positive semidefinite for every data set. (These equations 
will yield positive semidefinite .~.2 if the data set is derived 
from a wrapped-Gaussina distribution and contains a 
very large number of points.) IF .~.2 is indefinite (i.e. has 
negative eigenvalues) the distribution generated by (17) 
will not be normalizable. We find that this frequently 
occurs with typical data sets, particularly when they are 
small. 

An alternative approach is suggested by the recogni- 
tion that the s in (0 j -  0 °) provide normalized periodic 
variables that are somewhat analogous to the Rj 
variables used in Cartesian space. Roughly following 
the Cartesian pzrocedure, we might attempt to fix all the 
elements of .--. by the N ( N +  1)/2 relations (derived 
from (21) and (22)): 

(sin(0j - 0 °) sin(0 k -- 0°)) = sinh(E2k ) 
(exp[i(0j -- ~)])(exp[i(0k -- 00)]) 

[not used] (26) 

where 0 ° is fixed by (21). 
The matrix on the left-hand side of (26) is the expec- 

tation value of an outer product ((defining sj = 
sin(0j - O°)/(exp[i(Oj - 0°)]), the left-hand side of (26) 
can be expressed as (SjSk)), and thus is guaranteed to be 
positive semidefinite. Unfortunately, the inverse hyper- 
bolic operation required to calculate ~2 from this matrix 
will not necessarily preserve this property, and this 
method also fails for some data sets. 

To remedy this ~roblem we seek a way of calculating 
an approximate E that is guaranteed to be positive 
semidefinite and, moreover, that can be calculated 
efficiently. We are guided by three requirements: 

1. 2 2 m u s t  have only positive eigenvalues. 
2. When the fluctuations are small (i.e. when the 

eigenvalues of.~.2 are << 7r2), 2 2 should approximately 
satisfy (24), (25) and (26). 

3. When the angular fluctuations are uncorrelated, the 
diagonal elements of ~.2 should be determined by (24), 
which is equivalent to using (16) separately for each 
variable. 

We begin by modifying (26) to force it to preserve the 
positive semidefinite property. For this purpose, we 
make the approximation of replacing the matrix of 
hyperbolic sines with the hyperbolic sine of the matrix: 

(sin(0j - 0 °) sin(0k -- 00)) = (sinh E2)jk 
(exp[i(0j - 0°)])(exp[i(0 k - O°)]) 

[not used] (27) 

This replacement, while not accurate in general, is 
accurate when ~2 is small or almost diagonal. Because 
the inverse hyperbolic sine is monotonic and positive for 
positive argument, x 2 determined by (27) is guaranteed 
to be positive semidefinite and, thus, to satisfy the first 
requirement. The second requirement is also satisfied 
because, for small fluctuations, 2 2 will be small and 

sinh 22 can be approximated by X 2 in (27). The resultant 
expression is equivalent to (24), (25) and (26) when 
similar small-fluctuation linear approximations to their 
log and sinh terms are made. However, the third 
requirement is not satisfied when the fluctuations are 
uncorrelated but large since the left-hand side of (,27) 
depends on the second-order moments (exp[i2(0j - 0y)]) 
while the left-hand side of (24) depends only on the first- 
order moments (exp[i(0j - 0°)]). 

To obtain an approximation that satisfies all three 
requirements, we first note that the expectation value in 
the left-hand side of (24) can be rewritten as: 

I(exp(i0j))l = 1 - 2(sin2[½ (0./. - 0°)]) (28) 

This suggests that we fix .~.2 by matching expectation 
values of: 

Sjk -- sin[½ (0j -- 0°)] sin[½ (Ok -- 00)] 

Matching (Sjk) to the corresponding expectation pre- 
dicted by the M W G  distribution requires the evaluation 
of (20) for half-integer-order moments. Although 
equation (20) is only exact for r/ on the integer lat- 
tice, we expect (and numerical tests verify) that it 
provides an interpolating function that is approximately 
correct at the half-integer values needed to evaluate 
~Sjk(O)Pwg(O)dO. Using this approximation and the 
same line of reasoning that led to (27), we get: 

(sin[½ (0j - 0°)] sin[½ (Ok -- 00)]) 
= (sinh E2/4)j k 

(exp[i(0j - 0°)])'/4 (exp[i(0k _ VkA0)]\'/4/ 

(29) 

Equation (29) with (23) satisfies all three requirements 
0 ~2 and thus is a candidate for calculating the 0 and , 

parameters to match an M W G  distribution to an 
arbitrary data set. The required expectation values can 
be directly calculated and the hyperbolic sine can be 
inverted either in the eigenvector basis or by using a few 
terms of a matrix power series. Since the derivation of the 
parameter-fitting equations is heuristic, we have no proof 
or measure of its relative accuracy. However, empirically 
we have found that it is a robust method that accurately 
models the correlated distributions that are encountered 
in the analysis of polymer torsion-angle distributions. 
(Numerical tests show that, as expected, (29) proves a 
better fit than (27).) This is demonstrated in the next 
section for two-dimensional cases that can be graphically 
analysed. 

APPLICATION OF THE M W G  METHOD TO 
TWO-ANGLE PROBLEMS 

We can test the utility of the M W G  distribution (17) with 
the parameter-fixing conditions (23) and (29) by re- 
analysing the terminally blocked valine data set. This 

2 gives the e- regions shown in Figure l d - f .  In contrast 
to the quasiharmonic method, the M W G  method 
approximates the distribution well even at the highest 
temperature. 

To demonstrate further the power of the method, we 
consider the collection of scatter plots for two-angle 
data sets having different amounts of fluctuation and 
correlation that are displayed in Figure 3. The e -2 regions 
for the angular quasiharmonic fits to these distributions 
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Figure 3 Scatter plots of two-dimensional data sets having various amounts of correlation and fluctuation. Panels (a) (d) show the e 2 regions 
generated by the angular quasiharmonic distribution; panels (e) (h) show the corresponding regions generated by the MWG distribution 

are shown in Figures 3a-d; the M W G  regions are 
shown in Figures 3e-h. The properties noted in the 
terminally blocked valine example are observed in 
these cases as well. In general, the quasiharmonic method 
is only accurate for small fluctuations and tends to 
overestimate the fluctuation tensor when fluctuations 
are large. This occurs because the quasiharmonic 
method only allows for (on-axis) periodicity of  the 
individual angles and not for the (off-axis) periodicity 
that results from correlated angular fluctuations. 
Thus, for example, it is unable to recognize that the 
data points in the lower right and upper left corners of 
Figure 3b are periodically related to the main lobe and 
yields an incorrectly large estimate of  the width of the 
distribution. In contrast, the periodic M W G  method 
recognizes these off-axis periodicities and is accurate 
even with very distributions displaying large correlated 
angular fluctuations. The example shown in Figure 3h 
is particularly remarkable: it shows that the M W G  
can accurately model a correlated distribution that 
completely wraps around the interval (-7v, 70 in angle 
space. 

A P P L I C A T I O N  OF T H E  M W G  M E T H O D  TO 
PEPTIDES 

The ability of  the method to characterize fluctuations in 
higher-dimensionality problems was tested by analysing 
the thermal motions of the peptide Met-enkephalin 
(HzN-Tyr-Gly-GIy-Phe-Met-COOH) in vacuo. This pep- 
tide contains 75 atoms and its conformation is described 
by 24 torsion angles. Peptide bonds were assumed to be 
rigid, thereby reducing the number of  angles to 19. 
Thermal motions of  the peptide were computationally 

17 sampled using the ECCEP3 empirical potential with 
Metropolis Monte Carlo 18 importance sampling. Fluc- 
tuations were examined about the previously calcu- 
lated 19 lowest-energy conformation using a limited data 
set of  1000 conformations. Our purpose was only to 
compare the characterization of the same data set by the 
angular quasiharmonic and M W G  methods, so no 
at tempt was made to ensure that the entire conformation 
space of Met-enkephalin was sampled. 

Both highly correlated and uncorrelated eigen- 
modes were observed. Four  representative eigenvectors 
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(out of the total of 19) are shown in Figure 4. The mode 
shown in the upper left panel involves the uncorrelated 
motion of a single torsion angle at the amino end of the 
chain. In contrast, the mode shown in the lower right 
panel involves the correlated motion of several angles in 
the centre of the protein. 

The root-mean-square fluctuations of many of the 
torsion angles were in the range of 20-60 ° . Some were as 
large as 120 ° . This is reflected in the relatively large 
magnitudes of the eigenvector components shown in 
Figure 4. Because these fluctuations are large, they could 
not have been well modelled by using the harmonic 
or quasiharmonic approximations in either Cartesian 
or torsion-angle space. To demonstrate the magnitude of 
the errors that can be introduced by inappropriate use of 
the quasiharmonic approximation, we compared the 
amplitudes of all the eigenmodes as calculated by the 
MWG and torsion-angle quasiharmonic methods. 
Figure 5 displays the (ordered) squared amplitudes of 
all 19 eigenmodes at low (300K) and high (1350K) 
temperatures. As shown in Figures 5c and 5d, the two 
methods give very different results at high temperature. 
The MWG analysis clearly indicates that mean-square 
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Figure 4 Amplitude of torsion-angle fluctuations in degrees for four 
eigenmodes of Met-enkephalin for 1000 computationally sampled 
conformations at 300 K 
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Figure 5 Eigenvalues of the angular fluctuation matrix ~2 calculated 
for Met-enkephalin from Monte Carlo data sets generated at 300 K ((a) 
and (b)) and 1350 K ((c) and (d)) using either the MWG ((a) and (c)) or 
angular qtaasiharmonic ((b) and (d)) models 

angular fluctuations are dominated by only a few modes. 
The extent of  this domination is not fully represented by 
the inaccurate quasiharmonic description, which, as in 
the example of  terminally blocked valine, tends to 
overestimate the angular fluctuations. As expected, the 
results from the two methods are much more similar at 
low temperature (cf. Figure 5a and 5b). However, even 

here, while there are no significant qualitative differences, 
the quasiharmonic method overestimates the square 
amplitude of mode 2 by ~40%. Further processing of the 
data would be required to relate these modes to obser- 
vable thermodynamic properties, but these comparisons 
suffice to indicate the advantages of the M W G  method. 

CONCLUSION 

The MW G  distribution is useful for describing distri- 
butions of  polymer conformations in internal angular 
coordinates. It is equivalent to previously described 
methods when describing distributions having only small 
fluctuations, but provides a significantly more accurate 
description when fluctuations are large. This is particu- 
larly important with small polymers or when large 
polymers are simulated at high temperatures to search 
large areas of conformation space. 

The terminally blocked valine example showed how 
the conventional angular quasiharmonic method tends 
to overestimate the extent of correlated fluctuations to 
the point where significant information is lost. This 
tendency towards overestimation probably explains the 
fact that the quasiharmonic method reported larger 
fluctuations for Met-enkephalin relative to the MWG 
method. This artifact obscures the extent to which fluctu- 
ations in the Met-enkephalin data set were concentrated 
in a small number of  dominant modes. 

The superior accuracy of the M W G  method relative to 
the angular quasiharmonic method derives from its 
respect of the periodicity of the angle space. Both 
methods are integral methods and, in contrast to the 
differential harmonic method, there is no need for 
the underlying potential to be roughly harmonic for the 
M W G  method to be applicable. Both methods char- 
acterize distributions in terms of their first and second 
moments, and even highly anharmonic multinodal 
distributions (e.g. like that shown in Figures le and l f )  
can be well described. In Cartesian space, it is possible to 
prove that the eigenvectors of the quasiharmonic A 2 
calculated using equation (5) describe the set of collective 
motions that best represents the largest fluctuations in a 
least-squares sense (e.g. see Garcia~). While we cannot 
construct a formal proof  for our approximate method, 
it seems evident that the M W G  method provides an 
analogous integral characterization in angle space. Thus, 
we expect that the collective motions corresponding to 
the eigenvectors of 8 2 similarly describe the dominant 
motions of polymers. 

An important application of the M W G  method will be 
in calculating anisotropic transition functions for Monte 
Carlo sampling of proteins in torsion-angle space. We 
expect that its increased accuracy will result in improved 
efficiency relative to direct application of the Vanderbilt 
and Louie method 9, which uses a Gaussian distribution 
like (1) for the transition function, to proteins 1°:1 . In this 
regard, we note that random vectors having the MWG 
distribution density can be easily generated. This accom- 
plished by generating random vectors in an 'unwrapped' 
unbounded 0 space with the Gaussian distribution (1) 
with substitutions (8) and (9) and simply mapping each 
vector coordinate back into the interval ( -~ ,  70. 

Determination of the MW G  fluctuation tensor from 
the data set is a non-trivial problem because of the 
difficulties encountered in ensuring that it be positive 
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semidefini te .  The  a p p r o x i m a t e  m e t h o d  we have devel-  
oped  works  very well in pract ice .  However ,  it is deficient  
on  two accounts .  F i rs t ,  it  tends  to overes t imate  the wid th  
o f  ex t remely  e longa ted ,  co r re l a t ed  d i s t r ibu t ions  (such as 
tha t  shown in Figure 3h) tha t  ' w r a p '  a r o u n d  the angle  
space in an off-axis d i rect ion.  Secondly,  when a da t a  set 
is numer ica l ly  genera ted  using the w r a p p e d - G a u s s i a n  
d i s t r ibu t ion  wi th  a n o n - d i a g o n a l  f luc tua t ion  tensor  .~.2 as 
a r a n d o m  kernel ,  equa t ion  (29) does  no t  exact ly  recover  
the or ig ina l  .~.2. This  is t rue even when the size o f  the d a t a  
set, N " ,  is t aken  to infinity.  In  our  experience nei ther  o f  
these deficiencies is i m p o r t a n t  for  p o l y m e r  ca lcula t ions:  
ex t reme d i s t r ibu t ions  like tha t  shown in Figure 3 are  no t  
encoun te red  and  (29) p rov ides  a g o o d  a p p r o x i m a t i o n  to 
the original  ~.2 for M W G  distr ibut ions within the observed 
range.  Nonethe less ,  a m e t h o d  for  ca lcula t ing  ~2 tha t  
addres sed  these po in t s  cou ld  fur ther  improve  accuracy  to 
some extent  and  extend the range  o f  app l i cab i l i ty  o f  the 
M W G  approach .  F o r m a l  impl ic i t  equa t ions  (e.g. a maxi -  
m u m  l ike l ihood  es t ima tor )  tha t  do  recover  the or iginal  
..-.2 in the l imit  N d ~ ec  can be der ived.  But  the i tera t ive  
c o m p u t a t i o n s  needed  for  so lu t ion  are  p roh ib i t ive ly  
expensive for the high-dimensional i ty  dis tr ibut ions needed 
to characterize large polymers.  Fur ther  work  is needed. 
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